
ON ADAPTIVE STRATEGY FOR OVERCOME STAGNATION IN
LGMRES(m, l)

Juan Carlos Cabral F.

jccabral19@gmail.com

Christian E. Schaerer

cschaerer@pol.una.py

Polytechnical School, National University of Asuncion

Campus Universitario, 2111 SL, San Lorenzo, Paraguay.

Abstract. The resolution of sparse linear systems is the most time-consuming step in running
simulations. The iterative resolution is typically based on projection onto Krylov subspaces.
The most popular choice used when linear systems are sparse and non-symmetric is the Gene-
ralized Minimal Residual algorithm (GMRES). This method and its variants find the appro-
ximate solution in the Krylov subspace minimizing the 2-norm of the residual. In particular,
we will focus on the method LGMRES (m, l), uses the last l error approximations in addition
to a Krylov subspace of dimension m. These parameters remain constant in each step. This
methodology allows to improve the convergence, but can stall (stagnate) if the parameters are
not selected correctly. The present work proposes an efficient way to exploit the Krylov sub-
space information to modify the restart parameters adaptively in order to avoid the stagnation.
Numerical results on problems of reservoir simulation show improvements over traditional im-
plementations.
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ON ADAPTIVE STRATEGY FOR OVERCOME STAGNATION IN LGMRES(m, l)

1 INTRODUCTION

The Generalized Minimal Residual Method, popularly known as GMRES is a Krylov sub-
space method for solving large sparse non-symmetric linear systems (Saad and Schultz, 1986)

Ax = b (1)

where A ∈ Cn×n is nonsingular and b, x ∈ Cn. Let x0 be an initial approximation and r0 =
b − Ax0 the initial residual. At k-th iterarion, GMRES gives an approximate solution xk that
minimizes the 2-norm of the residual vector rk = b − Axk over all vectors in the k-th Krylov
subspace spanned by {r0, Ar0, · · · , Ak−1r0}. When the iteration proceeds GMRES obtain a
sequence of non-increasing residual norms.

In theory, GMRES converges before n iterations, but the cost for computing the orthonor-
mal basis of Krylov subspace increases as the iteration proceeds. Hence GMRES is not practical
for large linear systems of equations. To reduce the cost of GMRES, a restarted version of GM-
RES, which restarts it after each cycle of m iterations, is often used. The restarted version is
denoted by GMRES(m). Compared to the GMRES, the restarted version requires less work for
storage, but for being competitive in computational cost, an appropriate restart cycle m has to
be chosen. Generally, m is selected according by practitioners via some heuristical approach.
The best way to select m has not yet been established.

We study a modification of standard GMRES(m), called LGMRES(m, l). This method
accelerates the convergence of GMRES(m) augmenting the standard search space using ap-
proximations to the errors of previous restart cycles (see Baker et al., 2005). Some interesting
properties of the convergence of GMRES(m) motivate the LGMRES(m, l) algorithm devel-
oped. Numerical experiments demonstrate that the LGMRES(m, l) augmentation scheme is an
effective accelerator for GMRES(m). We propose a new adaptive restarting strategy for the
LGMRES(m, l) to speedup standard GMRES(m) and overcome stagnation.

This paper is organized as follows. In §2, we introduce the formulation for LGMRES(m, l),
as well as, definitions and ways to identify and characterize the stagnation. In §3, it is presented
strategies for overcoming stagnation while numerical results are presented at §4. The conclusion
are presented at §5 showing that the adaptive strategy improves the convergence of standard
GMRES(m)and LGMRES(m, l).

2 THE ADAPTIVE LGMRES(m, l)

LGMRES(m, l) method is used to accelerate the convergence of the standard GMRES(m),
but if the selection of the parameters is not appropriate, the method stagnates. There are sev-
eral alternatives to avoid the stagnation. For instance, we can mention enriching the subspace
of searching through approximations of the eigenvectors (see Morgan, 1995; Chapman and
Saad.1997); or modifying the restart parameter m (see Baker et al., 2009; Cuevas and Schaerer,
2010; Cabral and Schaerer, 2014). In this work we focus on the latter strategy, but focusing in
the LGMRES(m, l) method. Initially, it is formalized a structural condition to identify when the
convergence is deteriorated. For solving part of this problem we propose to use a proportional
controller to vary the size of the search subspace for enlarging the search subspace and the pa-
rameter m, since decreasing the restart parameter does not contribute to an improvement in the
convergence (see Proposition 3.1).

CILAMCE 2017
Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering
R.H. Lopez, L.F.F. Miguel, P.O. Farias (Editor), ABMEC, Florianpolis, SC, Brazil, November 5-8, 2017



Juan Carlos Cabral F., Christian E. Schaerer

2.1 GMRES(m)
GMRES(m) approximates the solution to system (1) at the j-th restart cycle using the

residual at (j−1)-th cycle rj−1 for constructing a Krylov subspace ofKjm(A, rj−1) of dimension
m. The j-th approximation then is built as

xj ∈ xj−1 +Kjm(A, rj−1) (2)

where the indexm denotes that the restarting parameter was set to the valuem, usually constant.
GMRES(m) obtain an approximate solution which minimize the 2-norm of the residual
rj := b− Axj , i.e.,

min
xj∈xj−1+Km(A,rj−1)

‖ b− Axj ‖2 . (3)

To solve this problem, the Arnoldi process is normally used for obtaining an orthonormal basis
for the Krylov subspace. The first m steps of this procedure can be expressed as:

AV j
m = V j

m+1H̃
j
m (4)

where V j
m ∈ Cn×m and V j

m+1 := [V j
m v

j
m+1] ∈ Cn×(m+1) have orthonormal columns and H̃j

m ∈
C(m+1)×m is the upper Hessenberg matrix formed by an upper matrix Hj

m of dimension m×m
and an entry hjm+1,m placed at position (m + 1,m). If the Arnoldi process starts with vj1 =
( 1
β
)rj−1, where β =‖ rj−1 ‖2, then by construction the columns of V j

m are an orthogonal basis
of the subspace Km(A, rj−1). Defining at j-th cycle of GMRES(m), the functional J(yj), then

J(yj) =‖ b− Axj ‖2=‖ b− A(xj−1 + V j
my

j) ‖2 (5)

and using the Arnoldi relation

J(yj) = ‖ b− Axj−1 − AV j
my

j ‖2
= ‖ rj−1 − AV j

my
j ‖2=‖ βvj1 − V

j
m+1H̃

j
my

j ‖2
= ‖ V j

m+1βe
(m+1)
1 − V j

m+1H̃
j
my

j ‖2
= ‖ V j

m+1(βe
(m+1)
1 − H̃j

my
j) ‖2,

where e(n)i is the i-th column of the n× n identity matrix. As a consequence,

J(yj) =‖ b− Axj ‖2=‖ βe(m+1)
1 − H̃j

my
j ‖2 (6)

The GMRES(m) approximation gives a vector yj which minimizes (6), and the minimization
of functional (6) with respect to yj is equivalent to the minimization of the expression (3). The
approximate solution xj is then obtained by xj = xj−1 + V j

my
j (Saad, 2003). For solving

expression (6) by least squares, in practice it is computed a QR decomposition of matrix H̃j
m

using plane Givens rotations (see Saad, 2003; Eiermann et al., 2000).

We consider now the angles between the residual at cycles. The angles αj := ∠(rj, rj−1)
and γj := ∠(rj, rj−2) are named sequential and skip angles, respectively. In accordance with
Theorem 4 in (Baker et al., 2005), the sequential angle of GMRES(m) can be defined implicitly
by

cos(αj) :=
‖ rj ‖2
‖ rj−1 ‖2
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When the residual vectors point in nearly the same direction at the end of every restart cycle,
the skip angle is small. This allows to characterize the slow convergence, i.e., ∠(rj, rj−1) ≈ 0,
because ‖ rj ‖2≈‖ rj−1 ‖2.

2.2 LGMRES

This algorithm proposed in (Baker et al., 2005) uses the simple framework of Morgan’s
GMRES-E(m, d) method (Morgan, 1995) for appending vectors to the standard Krylov space.
The motivation of LGMRES(m, l) is based on preventing an alternating behavior observed in
the GMRES(m) residual at consecutive cycles which results in deteriorating the convergence.

To prevent the alternating behavior, LGMRES include approximations to the error in the
current approximation space. We define the approximation to the error after the j-th restart
cycle as

ϕj = xj−1 − xj−2 (7)

and ϕj ≡ 0 for j < 1. This error approximation vector is used for augmenting the approx-
imation space Km(A, rj−1) at the next cycle. Note that ϕj ∈ Km(A, rj−1). Therefore, this
error approximation ϕj in some sense represents the space Km(A, rj−1) generated in the pre-
vious cycle and subsequently discarded. Hence it is a natural choice for enriching the next
approximation space Km(A, rj).

The method LGMRES(m, l) augmentes the standard Krylov approximation space with l
previus approximations to the error. Therefore, at the end of restart cycle j, LGMRES(m, l)
finds an approximate solution to linear system in the following way:

xj = xj−1 + qjm−1 +

j∑
k=(j−l+1)

αjkϕ
k (8)

where polynomial qjm−1 and αjk are chosen such that ‖ rj ‖2 is minimized. Note that l = 0
corresponds to standard GMRES(m).

The augmented approximation space S = Km(A, rj−1)∪span{ϕk}, k = (j− l+1) : j has
dimension s ≡ m + l. We find the approximate solution from S whose corresponding residual
is a minimum in the 2-norm. The matrix Vs+1 is the n × (s + 1) orthonormal matrix whose
first m + 1 columns are the Arnoldi vectors and last l columns result from orthogonalizing the
l error approximation vectors (ϕk, k = (j − l+ 1) : j) against the previous columns of Arnoldi
vectors. W j

s is the n× s matrix whose first m columns are equal to the first m columns of V j
s+1

and whose last l columns of W j
s are the l error approximation vectors (typically normalized so

that all columns are of unit length). Then the relationship

AW j
s = V j

s+1H̃
j
s (9)

holds for LGMRES(m, l), H̃j
s denotes an (s + 1) × s upper Hessenberg matrix. Typically, the

number l of vectors appended is much smaller than the restart parameter m (Baker et al., 2005).
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It is important to remark that LGMRES is not helpful when one of the following situations
occurs: (a) when GMRES(m) skip angles are not small; (b) when GMRES(m) sequential an-
gles vary greatly from cycle to cycle; (c) when GMRES(m) converges in a small number of
iterations; or (e) when GMRES(m) skip angles and sequential angles are near zero (indicating
stagnation). LGMRES is not typically a substitute for preconditioning and does not help when
a problem stalls for a given restart parameter. Possible improvements to the algorithm include
a robust adaptive variant (Baker et al., 2005).

3 Adaptive-LGMRES(m, l)
The method combines two existing techniques in order to avoid slow convergence and

stagnation. We modify a method proposed by Cabral and Schaerer (2014). Firstly we study
the possibility of augmenting the dimension of the Krylov subspace increasing the m parameter
and using the approximation of errors instead of approximations of eigenvectors.

We observe three possibilities in the m value for the next cycle: decreasing, remaining
constant and increasing. From the point of view of present proposal the first two possibilities
do not avoid stagnation. Observe this in the following proposition.

Proposition 3.1. During a stagnation at the GMRES(m), we can obtain a decrease in the
residual norm at the next restart cycle if we increase the value of parameter m.

Proof. According to Lemma 2.5 of Tebbens and Meurant, 2015 and Theorem 3.1 of Strikw-
erda and Stodder, 1995, when GMRES(m) presents a stagnation, the first row of the Hessenberg
matrix has zeros components.

J(yj) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



β

0

0
...

0


−



0 0 · · · 0

hj2,1 hj2,2 · · · hj2,m

0 hj3,2 · · · hj3,m
... . . . ...

0 · · · hjm,m−1 hjm,m

0 · · · 0 hjm+1,m




yj1

yj2
...

yjm



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2

Because yj minimize J(yj) and the matrix without the first row is upper triangular with linearly
independent rows, the residual norm at j-th cycle is ‖ rj ‖2=‖ rj−1 ‖2

Firstly, we consider the decrease in one unit at the j-th restart cycle,

J(ỹj) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



β

0

0
...

0


−



0 0 · · · 0

hj2,1 hj2,2 · · · hj2,m−1

0 hj3,2 · · · hj3,m−1
... . . . ...

0 · · · hjm−1,m−2 hjm−1,m−1

0 · · · 0 hjm,m−1




ỹj1

ỹj2
...

ỹjm−1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2
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Thus, there is no improvement and the vector ỹj is zero and it is established analogously
for any decrease in m. In the next place, we consider an increase of m in a unit,

J(ŷj) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



β

0

0
...

0


−



0 0 · · · hj1,m+1

hj2,1 hj2,2 · · · hj2,m+1

0 hj3,2 · · · hj3,m+1

... . . . ...

0 · · · hjm,m−1 hjm,m+1

0 · · · 0 hjm+2,m+1




ŷj1

ŷj2
...

ŷjm+1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2

Considering a fixed value of m we have ‖ rj−1 ‖2= β, the first element of the vector J(yj)1 =
β. But for the case of an increase in a unit we will have: J(yj)1 = β− (0× ŷ1+ · · ·+0× ŷm+
h1,m+1× ŷm+1). This allows, ‖ rj ‖2<‖ rj−1 ‖2, as long as the h1,m+i× ŷm+i 6= 0,∀i = 1 : αP .
If we consider an increase greater than one, we would have:

J(ŷj) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



β

0

0
...

0


−



0 0 · · · hj1,m+1 · · · hj1,m+αP

hj2,1 hj2,2 · · · hj2,m+1 · · · hj2,m+αP

0 hj3,2 · · · hj3,m+1 · · · hj3,m+αP

...
. . .

...

0 · · · hjm,m−1 hjm,m+1 · · · hjm,m+αP

0 · · · 0 hjm+αP ,m+1 · · · hjm+αP+1,m+αP





ŷj1

ŷj2
...

ŷjm+1

...

ŷjm+αP



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2

which will allow, J(ŷj) = β − (0× ŷj1 + · · ·+ 0× ŷjm + hj1,m+1 × ŷ
j
m+1 + · · ·+ hj1,m+αP

× ŷm+αP ),
thus ‖ rj ‖2<‖ rj ‖2. �

Proposition 3.2. If we have stagnation, appending error approximation vectors to the stan-
dard Krylov space can not remove the stagnation.

Proof. If we have complete stagnation, imply ϕj = xj−i − xj−i−1 = 0. In this way we
have,

(vj1, Aϕ
j) = 0⇒ rj = rj−1

�

Our new method is denoted as A-LGMRES(m, l), where at the same time to increase the
search subspace with information of the previous cycles, it is increasing the value of m when
the algorithm presents stagnation. We enrich the Krylov subspace with l error approximation.
In this way, the search subspace will be of size s = mj + l. Ws is a n × s matrix with the
first mj columns being the Arnoldi’s vectors and the last l vectors being error approximation
ϕi,∀i = 1, · · · , l. This strategy improves the convergence when the method converges and has
no stagnation problems due to bad selection of the restart parameter.

At the end of jth restart cycle, A-LGMRES(m, l) seeks the approximate solution xj of the
form

xj = xj−1 + zj with zj ∈ Km(A, rj−1) + {ϕi}li=1 (10)
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where Km(A, rj−1) + {ϕi}li=1 is the enriched search subspace.

In addition, to the enriched search subspace, an adaptive way to vary the restart parameter
is introduced. This is done for avoiding a possible stagnation for any bad selection of the restart
parameter. We use an updating law formj named discrete Proportional controller with the form:

mj = mj−1 + αP

⌊
‖rj−1‖
‖rj−2‖

⌉
. (11)

where αP ∈ Z and

⌊
‖rj−1‖
‖rj−2‖

⌉
means the nearest integer to ‖r

j−1‖
‖rj−2‖ . Observe that poor conver-

gence implies ‖r
j−1‖
‖rj−2‖ ≈ 1. According the Proposition 3.1, the selection of αP > 0 is taken for

increasing the restart parameter in the next cycle. On the other hand, if the algorithm has good
convergence ‖r

j−1‖
‖rj−2‖ ≈ 0, and the restart parameter remain constant (mj = mj−1).

Baker et al., (2005) has demostrated that the optimal number l of error approximations used
in LGMRES at every cycle is typically small, generally less or equal than 3. We observe in this
paper that the optimal value for l is also small (see Section 4.1). The pseudocode for the j-th
cycle of the proposede method called A-LGMRES(m, l) is presented in the Algorithm 1.

Algorithm 1 The j-th cycle of A-LGMRES(m,l), (j > l).
Require: Given A, xj−1,rj−1,mj ,ϕj .

1: s = mj + l
2: for k = 1 : s do
3:

w =


Avk, j ≤ mj

Aϕk−mj
, mj + l + 1 ≤ k ≤ mj + l

4: for i = 1 : k do
5: hi,k =< w, vi >
6: w = w − hi,kvi
7: end for
8: hk+1,k =‖ w ‖2
9: if hk+1,k = 0 then

10: stop;
11: end if
12: vk+1 = w/hk+1,k

13: end for
14: Find yj = argminy∈Cs ‖ βe1 − H̃sy ‖2, compute xj and rj ;
15: if ‖ rj ‖2< tolerance then
16: stop;
17: else
18: Compute the error approximations vectors, ϕj , j = j − l + 1, . . . , j:
19: Compute mj+1 from Proportional Derivative strategy;
20: end if
21: j = j + 1
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4 NUMERICAL RESULTS
We show the potential of the proposed method by presenting experimental results from a

variety of problems. We tested 12 problems from the Matrix Market Collection (all problems
of fluid mechanics). A zero initial guess is used for all problems. If a right-hand side is not
provided, we generate a random right-hand side. We stop the algorithm when the relative resid-
ual norm is less than the convergence tolerance, i.e., when ‖r

j‖2
‖r0‖2 ≤ 10−9 or when the maximum

number of cycles is exceeded (j ≤ 1000).

The matrices used in this work are non-symmetric stored in Compressed Sparse Column
format (CSC). These matrices are presented in Table 1 . The columns labeled size and nnz
are for matrix dimension and number of non-zeros entries. Condest refers to the condition
number. All algorithms were implemented in MATLAB. The implementations are own using
pseudocodes proposed in the article of Saad and Schultz (1986), so that we can make changes
to the restart parameters within cycles and enrich the search subspace. The tests are run on a
desktop machine with Intel Core i3-2310M CPU @ 2.10GHz X 4 and 5.8 GB of main memory,
by using MATLAB 7.7.0 for Linux.

In the subsection §4.1 we select the parameters for the proposed method. The comparison
between the methods GMRES(m), LGMRES(m, l), and A-LGMRES(m, l) is given in §4.2.
Then, in subsection §4.3 is discussed the A-LGMRES(m, l) for avoiding the stagnation, while
GMRES(m) and LGMRES(m, l) fail.

Table 1: The matrices information.

Matrix size nnz Condest

raefsky1 3242 294276 3.16E+4

raefsky2 2242 293551 1.08E+4

sherman1 1000 3750 2.26E+4

sherman4 1104 3786 7.16E+3

orsreg1 2205 14133 1.54E+3

orsirr1 1030 6858 1.67E+5

rdb2048 2048 12032 2.09E+2

steam2 600 13760 3.55E+3

cavity05 1182 32632 9.18E+5

sherman5 3312 20793 3.90E+5

sherman3 5005 20033 6.90E+16

cavity10 2597 76171 4.46E+6

4.1 Selection of parameters to A-LGMRES(m, l)
We chose the initial restart parameter m = 30 because it is a common choice and often the

default in general linear solver packages such as PETSc (see Balay et al., 2001). For GMRES
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(m) the restart parameter remain constant. The total size of search subspace of LGMRES(m, l)
considered in this paper is 30, i.e., we will use LGMRES(30 − l, l) to compare with the other
methods. Similarly for the A-LGMRES method, the size of the search subspace for the start is
the same as in the previous case, but in this case the value of m can increase when there are
drawbacks in the convergence. For the last two cases, when we have j < l, there are no enough
error vectors, so it is recommended using Arnoldi vectors instead of ϕj such that the dimension
of the search subspace can be fixed as m+ l.

Firstly, the parameter αP is selected for allowing an increasing in the value of m according
(see §3). The parameter αP must be positive to increase mj using the proportional controller
proposed in §3. If an stagnation is observed, high values of αP increases the computational cost
and storage requirements, hence the good property of GMRES(m) is lost. In contrast, small
values allow the possibility of the residual norm decrease, but can remain stagnated in the next
restart.

For the set of problems we have tested values of αP between 0 and 5 (see Table 2). For
αP > 5, a lower cycle is achieved but with a longer time, this is due to the fact that the cost of
orthogonalization increases in problems with slow convergence or stagnation. For this test, we
use l = 3, which is within the range of optimal values proposed by Baker, (2005).

Table 2: The performance of A-LGMRES(m, l) for different αP and considering number of restart cycle.

Matrix αP : proportional constant to increase m

0 1 2 3 4 5

raefsky1 29 24 22 21 19 18

raefsky2 59 31 27 25 24 21

sherman1 28 24 21 20 20 18

sherman4 14 13 12 12 12 12

orsreg1 20 18 16 15 15 15

orsirr1 75 37 36 30 28 26

rdb2048 17 16 16 14 14 14

steam2 20 12 11 11 9 9

cavity05 81 32 29 26 24 23

sherman5 1000 111 73 66 53 52

sherman3 289 77 62 52 46 43

cavity10 130 44 39 35 32 29

Table 3 shows the summatory of the cycles required for convergence for each αP value
and its corresponding time consuming for the 12 problems tested. If we use αP = 0, we
have the standard LGMRES(m, l). In this work, we select the value αP = 2 since it presents
the lowest value in the summatory of cycles in Table 3. The other option would be αP =
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1, however this represents a 6.7% of the increase over the smallest summatory of time. The
standard LGMRES(m, l) has an increase of 30% with respect to the proposed method with the
selected parameter.

Table 3: Sum of cycles and time for every αP .

Matrix αP : proportional constant to increase m

0 1 2 3 4 5

Sum of cycles 1762 439 364 327 296 280

Sum of time (seconds) 49.38 39.94 37.44 42.90 42.05 50.38

Next, we select the parameter l. The optimal values for l are typically very small, generally
l ≤ 3 (see Baker, 2005). For this work, we consider 1 ≤ l ≤ 5 and search the best value of l to
get the shortest time and the least number of cycles.

The number of restarts cycle and the time (in seconds) to make the relative residual norm
below 10−9 are shown for different values of l in Table 4 and Table 5, respectively. We can
see that A-LGMRES(m, l) with l = 3 and l = 5 produces better results on most of the tested
matrices. For this work, we select l = 3 being the maximum optimal value proposed by Baker,
(2005); and being equal to the initial consideration for αP . The proposed method using l = 3
has an increase of only 4% with respect to the smallest sumatory of time obtained with l = 5.

Table 4: The performance of A-LGMRES(m, l) for different l, considering number of restart cycle.

Matrix l: number of error approximations

1 2 3 4 5

raefsky1 27 22 22 19 18

raefsky2 36 27 27 25 24

sherman1 24 22 21 21 21

sherman4 16 14 12 11 11

orsreg 1 16 16 16 16 16

orsirr 1 39 37 36 35 34

rdb2048 16 15 16 14 15

steam2 14 13 11 11 8

cavity05 36 33 29 28 28

sherman5 87 74 73 78 70

sherman3 70 61 62 61 60

cavity10 45 44 39 38 32
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Table 5: The performance of A-LGMRES(m, l) for different l, considering time in seconds.

Matrix l: number of error approximations

1 2 3 4 5

raefsky1 1.94 1.36 2.29 1.15 1.09

raefsky2 2.97 1.88 2.07 1.85 1.73

sherman1 0.49 0.39 0.38 0.43 0.39

sherman4 0.18 0.12 0.11 0.11 0.12

orsreg 1 0.3 0.29 0.29 0.3 0.36

orsirr 1 0.8 0.76 0.72 0.79 0.8

rdb2048 0.3 0.25 0.3 0.25 0.29

steam2 0.14 0.1 0.08 0.08 0.06

cavity05 1.84 1.71 1.23 1.36 1.22

sherman5 23.39 16.51 17.11 20.69 16.52

sherman3 17.88 12.58 12.75 13.48 14.07

cavity10 3.25 3.38 2.95 2.69 2.04

4.2 Comparison to standard methods
In this section, numerical examples are given to demonstrate the improvement of LG-

MRES(m, l) method, obtained from the adaptive variation of the restart parameter using αP =
2. The numerical results are presentented in Table 6.

Table 6: Numerical results for orsreg1, orsirr1, steam2 and cavity05.

Matrix GMRES(30) LGMRES(27, 3) A-LGMRES(27, 3)

cycle time cycle time cycle time

orsreg1 26 0.38 20 0.27 16 0.27

orsirr1 121 0.9 76 0.59 36 0.76

steam2 12 0.07 20 0.12 11 0.07

cavity05 825 10.04 81 2.36 29 1.59

Example 1. We consider the matrices orsirr 1 and cavity05. Both matrices are real non-
symmetric from computational fluid problems. No problems of stagnation were found using
the standard algorithms. The proposed method have the smallest number of cycles but a little
increase in the time of convergence for the case of orsirr1 comparing with the LGMRES(27, 3)
(see Figure 1). In the case of cavity05, the proposed method have the smallest number of cycles
and time of convergence(see Figure 2).
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Figure 1: The convergence curves of matrix orsirr1.
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Figure 2: The convergence curves of matrix cavity05.

4.3 Overcoming the stagnation

LGMRES(m, l) acts an accelerator for GMRES(m) but is not designed to overcome stalling
as the error approximation vectors, ϕj , are zero or close to zero when the residual norm does
not decrease within a cycle (see Proposition 3.2). In this work, three matrices: sherman3, sher-
man5 and cavity10, have stagnation using GMRES(30). We compare the proposed method with
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LGMRES(m, l) and GMRES-E(m, d) (see Morgan, 1995). The numerical results are presen-
tented in Table 7. If the number of cycle is 1000, it implies that the tolerance established in the
stop criterion was not achieved and the method failed.

Table 7: Numerical results for sherman5, sherman3 and cavity10.

Matrix LGMRES(27, 3) GMRES-E(27, 3) A-LGMRES(27, 3)

cycle time cycle time cycle time

sherman5 1000 31.85 266 11.28 73 16.34

sherman3 311 10.67 1000 52.68 62 13.15

cavity10 113 4.04 188 10.16 39 2.80

Example 2. Simple example showing stagnation problem in the convergence of GMRES(30).
We consider the matrices sherman3 and sherman5 generated in oil reservoir simulation. Both
matrices are real non-symmetric with relative small eigenvalues in magnitude. The convergence
results are shown in Figure 3 and Figure 4.
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Figure 3: The convergence curves of matrix sherman5.

5 CONCLUSION

An Adaptive LGMRES for solving linear systems has been presented and tested, as well
as a criterion to vary the restart parameter. This criterion is based on the presence of stagna-
tion. It is important to remark that the convergence is improved for all tested cases. Moreover,
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Figure 4: The convergence curves of matrix sherman3.

in order to achieve an improvement in terms of time of convergence, it is important to choose
adequately the proportional parameter. The result is quite encouraging since it is possible to ob-
tain improvements in both the convergence and the computational cost with respect to standard
methods.
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